

VAST Real Time Tools and the Verification and Validation Simulation

Debbi Ballinger, Ron Lehmer, and Sandy Lozito

VAST-RT Background

- VAST-Real Time capability is one of the deliverables of the Virtual Airspace Simulation Technologies (VAST) element
- Provide for evaluation of human performance and/or roles and responsibilities issues of new operational concepts
- Integrate models, simulation labs and facilities into a distributed network
- Leverage existing facilities and models
- Reconfigurable to meet different concept requirements

VANS

VAST-RT Delivered

- Validated real time ATM simulation capability
- Enables distributed Human-in-the-Loop simulations for human factors studies
 - Across multiple ATM domains
 - Research conducted in the best environment available
 - Study of roles and responsibilities
- Also a platform to evaluate safety, efficiency, and capacity issues
- Supports investigations of existing and future operational concepts and decision support tools

VAST Real-Time Innovations

Distributed simulation system

- Integrates labs and simulators of varying fidelity
- Custom components supporting multi-domain ATM simulation, data collection, and research goals

Open architecture

- Allows rapid and cost effective integration of additional simulators, components, and decision support tools
- Ability to redesign the national air space to model future concepts

Gate-to-Gate simulations

- Transfer of target ownership between simulation facilities

VANS.

VAST-RT System Design

VANS

VAST-RT System Architecture

- Customized for distributed ATM simulations
- Allows rapid modifications of simulation communications environment
- Implementation of both HLA attributes and interactions
- Synchronized process to update the FOM and Toolboxes

-identity -position -heading -speed

-attitude -articulation

-surveillance

Flight Plan

- -flight plan -runway
- -gate assignment -center assignment
- -sector assignment
- -meter fix
- -taxi information

Aircraft

-Tail Number

Ground Vehicle

- -identity -position
- -heading -speed

Simulation State

-state

-simulation time

Federate Status

-status

Interactions

- +Ownership()
- +FP Amendment()

+Sim State Transition()

VAST-RT HLA Communications Toolbox

- Core component of the VAST-RT architecture
- Standardizes our interface to HLA RTI
- Leverages existing interfaces
- Reduces integration time and cost
- Reusable

VAIS

Bridging HLA Federations

- HLA federations can be incompatible due to:
 - HLA RTI Versions
 - HLA Federation Object Models
- Bridging reduces or eliminates the need to modify an existing HLA simulator interface
- Bridge implementation handles data conversion
 - Attribute Mapping
 - Coordinate Transformations
 - Frame rate differences

VAST-RT Bridges and Portals

- A Bridge allows two different HLA architectures to interact
- A Portal connects a non-HLA based architecture to the VAST-RT HLA implementation
 - Different methods for data marshalling and messaging
 - Synchronous vs. asynchronous operation
- Bridges currently supporting:
 - FutureFlight Central a high fidelity tower simulator
- Portals currently supporting:
 - AOL (Airspace Opertations Laboratory) a high fidelity
 TRACON simulator
 - GO-SAFE a VAMS concept decision support tool
- Source available

Ownership Handoff Manager

- Controls ownership of objects in the simulation
 - Allows the researcher to use the most advantageous simulator for each part of a simulation
 - Centralizes the ownership logic which does not have to be programmed into each simulator and tool
 - External interfaces of simulators need to provide for remote creation and deletion of traffic
- Automatically determines ownership based on target location and experiment rules and triggers transfer interaction
- Programmable for different research requirements
- Source available

VANS

VAST-RT Air Traffic Generator (ATG)

Facility-independent target generator

- Used where participants are not needed in the loop
- Saves money when running large distributed simulations

Supports airborne and ground operations

- Integrated into one simulator
- Common fidelity
- Gate-to-gate
- Pseudo-pilot interfaces for optimized for each domain
- Accepts data link commands
- Loop closing agent
- Source available

Additional Software Components

User Interface Toolbox (UIT) Server/Client

- Web enabled XML data server
- Client application for remote observation of simulations

HLA Data Logger

VAST-RT-developed distributed simulation data logger

Flight Data Processor

 Provides data needed by some simulators but not generated or stored in other simulators

Simulation Time Federate

Distributes a simulation master clock

Technical Interchange Meeting #5, March 8-9, 2005

AERONAUTICS research mission directorate

VAST-RT Capability One – September 2004

14

Final Delivery

VAST-RT Capability 1.1

- Increased capacity in the Air Traffic Generator
- Expansion of attribute and interaction set

VAMS Concept Evaluation

Initial integration of the GO-SAFE DST

Other ATM Simulation Projects

- Shuttle Convoy (VMS and FFC)
- Army (JAMUS UAV Simulation)
- ACCESS5 (UAV ATM Integration Simulation)
- Dallas /Fort Worth Airport end around taxiway evaluation
- FAA Tech Center

Concluding Remarks

- VAST-RT successfully implemented an open, distributed simulation architecture
- Supports the rapid, reusable, and cost effective integration of simulators and components with varying levels of fidelity
- Extends the capability of existing high fidelity human factors simulators
- Provides the ability to conduct system-level studies to evaluate air traffic safety, efficiency, and capacity for new ATM concepts
 - Human-in-the-Loop
 - Across Multiple ATM Domains
- Can support existing and future airspace operational concepts and decision support tools
- Validated by SEA

- Purpose: To test VAST Real Time tools in FY04 using an AATT concept
- Approach
 - Select a concept that has been tested in previous work
 - Prepare the real-time tools to test this concept using the current set of tools
 - Attempt to replicate the findings from previous work using the real-time toolbox to validate the toolbox development
 - Provide pathways to future tests in the real-time environment
- System Evaluation and Assessment (SEA) is responsible for experimental requirements

Lessons Learned

Current System Evaluation Methods: Air-Ground Integration Experiment

B747-400 Simulator at NASA Ames

Real-Time Link

FAA William J. Hughes Technical Center Lab

Data

Timing variables
Closest Point of Approach
Aircraft maneuvers
Workload data
Communication timing
Cockpit display data
Alerting logic data

Limitations:

- Data for a limited airspace region (Two sectors in Memphis Center)
- Two years of development and preparation
- High cost for development and running of subjects

Requirements for the VAST Real Time V&V

- Include at least two facilities
- Multiple airspace domains
- Test at least two parts of the triad (flight deck and ATC)
- Emphasize common architecture and data management and analysis
- Sequential testing prior to FY04 test
- Should be concerned with automation topics, with an emphasis upon human factors
- Should be closely related to some of the advanced concepts derived from the SLIC sub-element

VAST Real Time V&V Approach

- SEA element generated the research requirements
 - Mapped research requirements to those of AATT Distributed
 Air-Ground Research
- VAST-RT team conducted development efforts
 - Several iterations to fine-tune the requirements
- Several Interim Tests and reviews were held
 - SEA participated in evaluations at test intervals
- SEA and VAST prepared the verification/validation report of the VAST RT tools

VAST Real-Time V&V Tools

Crew Vehicle
Systems Research
Facility

Air Traffic Generator

FutureFlight Central

Airspace Operations Lab 21

Scenarios for VAST Real Time V&V

- Airspace between Dallas-Fort Worth airport (DFW) and Chicago airport (ORD)
 - AOL = DFW enroute and terminal airspace (only north half was actively controlled)
 - Also simulated Kansas City (ZKC), Chicago (ZAU), and Houston (ZHU)
 - ATG = ZKC and ZAU
 - FFC = East side of DFW airport
 - ACFS = started in ZFW airspace and landed 17L or 17C at DFW airport
 - Five simulated aircraft flew to ORD
- Approximately 100 aircraft in scenario

Some Data Collected from VAST Real-time V&V

- Focus of data collection was to determine that the data were valid and sufficient for future tests
- Aircraft performance data
 - Altitude, speed, braking, etc.
- Data related to flight deck tools
 - FMC/CDU data, Mode Control Panel data
- Surveillance data
- Video and audio recordings
- Data management and configuration were also conducted to insure the ability to conduct analyses

Sample Data from VAST Real Time V&V: Taxi duration

Aircraft Taxi Duration from Touchdown to Gate Arrival: V&V Run 5 (includes stops and movement times)

Sample Data from VAST Real Time V&V:Facility and Aircraft Ownership

Two-Dimensional Flight Paths of Selected Arrival and Departure Aircraft (V&V run4)

VAST Real Time V&V Challenges

Data management from the VAST V&V Simulation

- Multiple facilities with different data collection protocols and facility dependent formatting
- Time synchronization among the different data sets was more challenging than originally determined (simulator + video + communications data)
- Future work will need more detailed data collection variables to accommodate individual tools, concepts, and specific human performance parameters

VAST Real Time V&V Accomplishments

- Multiple facilities were linked, integrated, and tested
- The data from previous simulations were comparable, and the V&V frequently exceeded previous data collection capabilities
- The VAST-RT facility is able to provide important human performance data for future concept assessment
- The VAST-RT development team did an outstanding job, and exceeded the simulation integration requirements for this verification task

